Pilot exposure to UV and blue light hazard in flight and developments in refractive surgery

Dr Adrian Chorley MSc, PhD, FCOptom
Optometrist Principal and Director
Aviation Vision Services
Plan

- UV and blue light hazard exposure
 - Summary of research conducted 2010 – 2015
 - Composed of 3 separate but interlinking studies:
 - Part 1: Irradiance levels received during flight
 - Part 2: Eye protection practices of professional pilots
 - Part 3: Effectiveness of sunglasses used in aviation environment

- Developments in refractive surgery
 - Description of some current surgical procedures
 - Latest CAA guidance material for refractive surgery
 - A personal perspective on refractive surgery
Non-ionising radiation

- Visible light from around 400-700nm
- UV-C (100-280nm) – absorbed at high altitudes
- UV-B (280-315nm) – attenuated by ozone layer
- UV-A (315-400nm) – 95% of terrestrial UV
- Blue light hazard peak effect around 440nm
- Photon energy $E = \frac{hc}{\lambda}$
- UV increases with altitude
- Acute / chronic ocular damage through UV exposure
Ocular effects of excess radiation exposure

- These conditions are multifactorial
- Good evidence of increase risk of cortical cataract (limited evidence for pterygium)
- No good evidence of increased prevalence of cataract in professional pilots
- Retinal photochemical damage by intense blue light
- Clinical changes mimicking Macular Degeneration (MD)
- No available data on MD in professional pilots
International Commission on Non-Ionising Radiation Protection (ICNIRP) guidelines

- Guidelines for eye and skin exposure limits based on best scientific evidence
- Exposure below limits would not be expected to cause adverse effects BUT exposure above limits does not guarantee adverse effects
- Ocular UV limits should be considered absolute for direct exposure
- Spectrally weighted radiant exposure (180-400nm) should not exceed 30 Jm\(^{-2}\) to unprotected eye
- Between 315-400nm, total unweighted radiant exposure over 8 hours should not exceed 10,000 Jm\(^{-2}\)
- Limits for retinal blue light exposure also defined
Equipment for measuring radiation

- Ocean Optics HR4000 spectrometer
- Associated diffuser and fibre optics
- Optical shutter for dark measurements
- Palmtop pc for automated software and data collection
- Battery power packs
- 2 illuminance UV data loggers
Equipment (2)

- Spectrometer calibrated against known reference source for wavelength and irradiance
- Calibration periodically re-checked
- Cosine diffuser error calculated
- Multi-region data acquisition
- Dark readings after each spectral reading
- Automated spectrometer data collection
- Automated illuminance UV data collection
- Manual illuminance UV data collection at pilot eye position (ahead and towards instruments)
Flights undertaken

- 6 flights (11 sectors)
- From London Gatwick
- Monarch Airlines

<table>
<thead>
<tr>
<th>Date</th>
<th>Destination</th>
<th>A/C type</th>
<th>flight time</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/05/2012</td>
<td>Faro, Portugal</td>
<td>A320</td>
<td>290</td>
</tr>
<tr>
<td>22/05/2012</td>
<td>Barcelona, Spain</td>
<td>A320</td>
<td>206</td>
</tr>
<tr>
<td>26/05/2012</td>
<td>Barcelona, Spain</td>
<td>A320</td>
<td>204</td>
</tr>
<tr>
<td>21/11/2012</td>
<td>Tobago</td>
<td>A330</td>
<td>555</td>
</tr>
<tr>
<td>01/03/2013</td>
<td>Alicante, Spain</td>
<td>A321</td>
<td>258</td>
</tr>
<tr>
<td>21/08/2013</td>
<td>Rhodes, Greece</td>
<td>B757</td>
<td>452</td>
</tr>
</tbody>
</table>

- 4 Helicopter flights
- From Aberdeen Dyce to off-shore oil platforms
- Bristow Helicopters
Results

• No measurable UVB signal detected during any flight

• Wide variation in UVA irradiance measured during flight (airlines and helicopters)

• Position of solar disc relative to line of sight

• Higher irradiance (& hazard ratios) during sectors with significant cloud cover below aircraft

• Mean 4.1 times increase in Blue Light Hazard at altitude (large variation partly dependent on ground conditions)
Results – Blue light hazard Airline flights

<table>
<thead>
<tr>
<th>Flight</th>
<th>Mean Radiance W/m².sr</th>
<th>Standard deviation</th>
<th>Min Radiance W/m².sr</th>
<th>Max Radiance W/m².sr</th>
<th>Flight duration (min)</th>
<th>Radiance dose for flight (J/m².sr)</th>
<th>Relative to ICNIRP guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Faro</td>
<td>5.87</td>
<td>1.58</td>
<td>3.74</td>
<td>11.28</td>
<td>290</td>
<td>60991</td>
<td>0.06</td>
</tr>
<tr>
<td>2 Barcelona</td>
<td>5.95</td>
<td>3.11</td>
<td>0.86</td>
<td>13.75</td>
<td>206</td>
<td>79974</td>
<td>0.08</td>
</tr>
<tr>
<td>3 Barcelona</td>
<td>4.34</td>
<td>1.57</td>
<td>0.75</td>
<td>7.05</td>
<td>204</td>
<td>50597</td>
<td>0.05</td>
</tr>
<tr>
<td>4 Tobago</td>
<td>3.5</td>
<td>4.73</td>
<td>0.18</td>
<td>32.06</td>
<td>588</td>
<td>58611</td>
<td>0.06</td>
</tr>
<tr>
<td>5 Alicante</td>
<td>13.31</td>
<td>20.71</td>
<td>0.19</td>
<td>94.81</td>
<td>301</td>
<td>245122</td>
<td>0.25</td>
</tr>
<tr>
<td>6 Rhodes</td>
<td>9.87</td>
<td>20.90</td>
<td>0.25</td>
<td>115.86</td>
<td>479</td>
<td>193783</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Maximum radiance dose over 10,000 sec to prevent type II damage = 1×10^6

Eyes ahead

Eyes down
Results – UVA Airline flights

<table>
<thead>
<tr>
<th>Flight</th>
<th>UVA ahead, J/m²</th>
<th>Relative to ICNIRP guidelines</th>
<th>UVA down, J/m²</th>
<th>Relative to ICNIRP guidelines</th>
<th>Flight duration (min)</th>
<th>UVA ahead, J/m²</th>
<th>Relative to ICNIRP guidelines</th>
<th>UVA down, J/m²</th>
<th>Relative to ICNIRP guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Faro</td>
<td>23405</td>
<td>2.34</td>
<td>11804</td>
<td>1.18</td>
<td>290</td>
<td>30400</td>
<td>3.04</td>
<td>15286</td>
<td>1.53</td>
</tr>
<tr>
<td>2 Barcelona</td>
<td>17051</td>
<td>1.70</td>
<td>10320</td>
<td>1.03</td>
<td>206</td>
<td>19591</td>
<td>1.96</td>
<td>12249</td>
<td>1.22</td>
</tr>
<tr>
<td>3 Barcelona</td>
<td>1468</td>
<td>0.15</td>
<td>771</td>
<td>0.08</td>
<td>204</td>
<td>1641</td>
<td>0.16</td>
<td>910</td>
<td>0.09</td>
</tr>
<tr>
<td>4 Tobago</td>
<td>2167</td>
<td>0.22</td>
<td>1700</td>
<td>0.17</td>
<td>588</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5 Alicante</td>
<td>38158</td>
<td>3.82</td>
<td>26705</td>
<td>2.67</td>
<td>301</td>
<td>39393</td>
<td>3.94</td>
<td>27693</td>
<td>2.77</td>
</tr>
<tr>
<td>6 Rhodes</td>
<td>62395</td>
<td>6.24</td>
<td>42129</td>
<td>4.21</td>
<td>479</td>
<td>65630</td>
<td>6.56</td>
<td>45481</td>
<td>4.55</td>
</tr>
</tbody>
</table>

UVA dose including turn around

<table>
<thead>
<tr>
<th>Flight</th>
<th>UVA per hour J/m² (ahead)</th>
<th>UVA per hour J/m² (down)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Faro</td>
<td>4842</td>
<td>2442</td>
</tr>
<tr>
<td>2 Barcelona</td>
<td>4966</td>
<td>3006</td>
</tr>
<tr>
<td>3 Barcelona</td>
<td>432</td>
<td>227</td>
</tr>
<tr>
<td>4 Tobago</td>
<td>221</td>
<td>173</td>
</tr>
<tr>
<td>5 Alicante</td>
<td>7606</td>
<td>5323</td>
</tr>
<tr>
<td>6 Rhodes</td>
<td>7816</td>
<td>5277</td>
</tr>
</tbody>
</table>
Ground Transmittance measurements

• 13 aircraft at stands assessed during turnaround
 • London Heathrow, Exeter International, Brooklands Museum
 • Assessed when solar UV levels higher

• 2 aircraft at turnaround (used for in flight measurements)

• Total 15 aircraft

• Front and side windshields measured
• Outside and dark measurements captured
• Also visors, side blinds and HUD (if fitted) transmittance measured
Windshield transmittance at ground level

<table>
<thead>
<tr>
<th>Type</th>
<th>Built</th>
<th>Airframe hrs</th>
<th>as of</th>
<th>measured on</th>
<th>UVA attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R front</td>
</tr>
<tr>
<td>B777-200</td>
<td>2000</td>
<td>48780</td>
<td>31/12/2011</td>
<td>06/11/2012</td>
<td>poor</td>
</tr>
<tr>
<td>B747-400</td>
<td>1993</td>
<td>89575</td>
<td>31/12/2012</td>
<td>06/11/2012</td>
<td>good</td>
</tr>
<tr>
<td>B777-200</td>
<td>1999</td>
<td>54961</td>
<td>31/12/2011</td>
<td>06/11/2012</td>
<td>poor</td>
</tr>
<tr>
<td>A321-200</td>
<td>2004</td>
<td>23440</td>
<td>31/12/2011</td>
<td>01/03/2013</td>
<td>poor</td>
</tr>
<tr>
<td>B777-300</td>
<td>2011</td>
<td>919</td>
<td>31/12/2011</td>
<td>16/04/2013</td>
<td>poor</td>
</tr>
<tr>
<td>B777-200</td>
<td>1998</td>
<td>66296</td>
<td>31/12/2012</td>
<td>16/04/2013</td>
<td>poor</td>
</tr>
<tr>
<td>B777-200</td>
<td>1997</td>
<td>62462</td>
<td>31/12/2011</td>
<td>16/04/2013</td>
<td>poor</td>
</tr>
<tr>
<td>B747-400</td>
<td>1991</td>
<td>90272</td>
<td>31/12/2011</td>
<td>16/04/2013</td>
<td>good</td>
</tr>
<tr>
<td>B777-200</td>
<td>1998</td>
<td>61318</td>
<td>31/12/2011</td>
<td>16/04/2013</td>
<td>poor</td>
</tr>
<tr>
<td>B747-400</td>
<td>1990</td>
<td>101859</td>
<td>31/12/2011</td>
<td>16/04/2013</td>
<td>good</td>
</tr>
<tr>
<td>A320-200</td>
<td>2007</td>
<td>10703</td>
<td>31/12/2011</td>
<td>16/04/2013</td>
<td>poor</td>
</tr>
<tr>
<td>Concorde</td>
<td>1973</td>
<td>not available</td>
<td></td>
<td>26/06/2013</td>
<td>good</td>
</tr>
<tr>
<td>Embraer 195</td>
<td>2008</td>
<td>8413</td>
<td>31/12/2012</td>
<td>28/08/2013</td>
<td>poor</td>
</tr>
<tr>
<td>Bombardier Dash8</td>
<td>2005</td>
<td>12195</td>
<td>31/12/2011</td>
<td>28/08/2013</td>
<td>good</td>
</tr>
<tr>
<td>B757-2T7</td>
<td>1987</td>
<td>91829</td>
<td>31/12/2012</td>
<td>21/08/2013</td>
<td>poor</td>
</tr>
</tbody>
</table>
Side blinds consistently better UV-A blockers than visors.
Part 1 Conclusions

- ICNIRP UVA ocular exposure limits exceeded during majority of flights (fastest within 1hr)
- This accounts for pilot use of visors / side blinds
- Windshield transmittance properties has greatest impact on UVA exposure
- Good UVA attenuating windshields do not cause excessive ocular exposure over 8 hours
- Most aircraft measured had poor UVA attenuating windshields
- Oldest aircraft tended to have good UVA attenuating windshields
- Similar findings for Boeing and Airbus fleet
- Pilots currently have no means to assess windshield UVA attenuating properties
- Increase in Blue light hazard at altitude quantified and well within international exposure limits – effects over lifetime / career unknown
Part 2 – Solar eye protection practices

- Web-based questionnaire (SurveyMonkey) developed
 - ‘piloted’ twice with minor modifications made following feedback
 - No personal identifiable data collected
 - Promoted to and completed by BALPA members

- Areas covered:
 - Use of sunglasses
 - Barriers to successful use
 - Disability and discomfort glare symptoms
 - Use of other standard / non-standard practices
 - Presence of UV/BL ocular related pathology
Part 2 results – participant demographics

- 2,917 fully completed questionnaires
- Majority airline: Short haul (SH) 58.7% or Long haul (LH) 33.8%
- Third category: Helicopter off shore (HOS) 1.9%
- 18.7% previous military experience
- 91.6% had total flight time logged over 2,500 hours
- Mean number of hours flown previous 12 months:
 - SH 707hrs (SD 150)
 - LH 640hrs (SD 151)
- Corrective spectacles required for 45.7% respondents (significant increase with age)
Part 2 results - Glare

- Discomfort glare reported ‘sometimes’ or ‘generally’ by 75% of respondents
- Disability glare reported ‘rarely’ or ‘sometimes’ by 83% of respondents (mainly during safety critical stages of flight)
- No difference in different flying categories
- No relationship between age or number of flying hours
- Significantly higher use of sunglasses with increasing reporting of glare
- Other symptoms reported: asthenopia, photophobia, epiphoria, photic sneeze
Sunglass use VDL vs Non VDL

Spectacle wearers use sunglasses significantly less.
Other reasons for not using sunglasses

• Instruments too dark to comfortable visualise through sunglasses
• Poor interaction with headset
• Other discomfort issues with frame
• Too much hassle to put on in flight
• Too expensive
• Not bothered by sunlight
• Aircraft has adequate protection with standard visors / blinds (more participants stated the opposite)
When are sunglasses used?

- **Walkaround**: Frequently used.
- **Taxi**: Sometimes used.
- **Take off**: Usually used.
- **Cruise**: Always used.
- **Approach**: Occasionally used.
- **Landing**: Usually used.
- **When tired**: Sometimes used.
- **When flying towards direct sun**: Always used.
- **When it feels too bright**: Rarely used.
- **Other**: Never used.
<table>
<thead>
<tr>
<th>Reasons for change in sunglass use</th>
<th>Increase</th>
<th>Decrease</th>
<th>Same</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunglass tint</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Sunglass comfort</td>
<td>7</td>
<td>9</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Change of operating environment</td>
<td>20</td>
<td>18</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Change of prescription</td>
<td>10</td>
<td>26</td>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>Increase awareness of potential impact to vision</td>
<td>23</td>
<td>1</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Eye contact with other pilot</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lost / damaged sunglasses</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Use other strategies instead</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Visual fatigue</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Change to light sensitivity</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>71</td>
<td>27</td>
<td>175</td>
</tr>
</tbody>
</table>
Other protection strategies

• Aircraft visors / blinds – most commonly used
• Use of baseball cap
• Non-standard procedures: charts, checklists, envelopes, tray liners, HUD cover against windshield or attached to visor. Also jump seat cushion, newspapers or vehicle sun shields against windshield, adjusting seat position, using hand to block sun
• Long haul highest users of protection strategies; helicopter off-shore lowest
• Ex-military pilots lower users of non-standard procedures
• No difference in use of other strategies between those requiring spectacle correction and those not except sunglasses (higher in non-spec wearers) and baseball cap use (higher in spectacle wearers)
• High level of dissatisfaction with standard aircraft solar protection (significantly more with Boeing than Airbus)
Prevalence of eye disease

- 1.4% cataract diagnosis
- 0.6% had undergone cataract surgery (IOL implants)
- 1.5% MD diagnosis
- No significant difference with flying category
- Significantly associated with age but not with number of flying hours

- 0.3% took vitamins / supplements solely due to eye health concerns and also reported significantly lower levels of disability glare
Part 2 - some conclusions

• Spectacles are significant barrier to sunglass use
• High levels of dissatisfaction with standard aircraft solar protection systems
• Wide range of sunglasses used (91 different brands)
• Low take up of aviation marketed sunglasses (2%)
• Tint colour likely to be a personal preference
• Low use of graduated tint (11%)
• Targeted advice should increase sunglass success for those pilots wishing to use them more
Part 3 Sunglass transmittance

• Used pilot sunglasses and new sunglasses measured
• Used sample showed good correlation with part 2 results
• 20 used non-prescription (15 uniform, 5 graduated tints)
• 2 used prescription sunglasses
• 18 new non-prescription (12 uniform, 6 graduated tints)

• No significant difference in transmission R-L lenses
• High levels of UV-A attenuation afforded (<0.5% transmittance at 380nm and <5% for the majority at 400nm)
Prescription sunglasses

• 2 assessed and compared to typical non-prescription sunglass

<table>
<thead>
<tr>
<th>ISO requirements</th>
<th>Graduated tint</th>
<th>Prescription sunglass 1</th>
<th>Prescription sunglass 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous transmittance, %</td>
<td>30.7</td>
<td>32.3</td>
<td>14.9</td>
</tr>
<tr>
<td>Weighted UV-A transmittance, %</td>
<td>0.1</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Filter category</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Average UV-A transmittance, %</td>
<td>0.2</td>
<td>6.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Average UV-A transmittance in 380-400nm, %</td>
<td>0.4</td>
<td>20.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>

• Prescription sunglass 1 would not provide adequate protection in flight (lens material dyed during manufacture without UV coating)
• A sunglass filter still may be ISO compliant
• Additional requirement of 10% at 380nm recommended
Protection from blue light hazard

- Blue light transmittance between 0.6-16%
- All non-prescription sunglasses offered at least sufficient attenuation to counter the mean increase measured at altitude (in part 1)
- Radiance within ICNIRP limits, although effect over career unknown
- No reason to recommend additional blue light hazard blocking requirements
Recommendations of research

- Be aware of UVA and potential pilot eye exposure
- All EU or equivalent compliant sunglasses will reduce UVA exposure to within ICNIRP limits
- Standard spectacle lens materials and contact lenses may not offer sufficient UVA blocking properties
- Sunglasses offer a degree of blue light hazard reduction which will counter mean increase at altitude
- Consider recommending graduated tint for sunglasses
- Ensure new aircraft have good UVA blocking properties
- Introduction of windshield labelling system
Further ongoing research

• Spectrometer study (part 1) currently being replicated by Air New Zealand
• UK based dosimeter study to assess pilots’ typical occupational versus global UVA and UVB exposure
Acknowledgements

Dr Marina Khazova
Dr Michael Higlett
Dr Katarzyna Baczyńska

Prof Bruce Evans

Dr Martin Benwell

Dr Simon Brown
Chris Ashpole

Guy Holmes
Developments in refractive surgery

• Prevalent and emerging types of refractive surgery
• EASA regulations regarding refractive surgery
• Current published and new CAA guidance material
• Post refractive surgery audit from CAA AeMC
Types of refractive surgery

• **Intraocular:**
 • Anterior chamber implants
 • ICL implants
 • Clear lens extraction (with single vision, toric or multifocal implants)

• **Peripheral corneal:**
 • CK (Conductive Keratoplasty)
 • AK (Astigmatic Keratotomoy)
 • Intacs
 • RK (Radial Keratotomy)

• **Central corneal**
 • PRK
 • LASIK
 • LASEK
 • ReLEx SMILE
 • Inlays
Implantable Contact Lens (ICL)
Clear Lens Extraction
Clear Lens Extraction

• High degrees of myopia and hyperopia can be corrected
• Complication rate as for cataract surgery (low)
• BUT no accommodation post surgery (will require reading glasses regardless of age)
• Multifocal implants – not acceptable for certification (GM)
• Accommodating implants only allow small refocusing ability
Laser Assisted In Situ Keratomileusis (LASIK)

- Most prevalent surgery conducted in UK
- Large range of refraction treatable
- Relatively painless
- Faster recovery
- Disadvantages
 - Reduced corneal sensitivity initially
 - Flap complications

Lasik Eye Surgery
Femtosecond laser (or FemtoLASIK / IntraLASIK)

- Used for creating LASIK flap
- More accurate than trephine cut
- Lower flap complications
- Now used for majority of LASIK procedures
- Risk of diffuse lamellar keratitis
Laser Assisted Epithelial Keratomileusis (LASEK)

• Higher degrees of myopia treatable than LASIK
• Equivalent visual outcomes to LASIK in low / moderate myopia

• Disadvantages
 • Increase incidence of regression / stromal haze in high myopia
 • Loss of epithelium during surgery (becomes PRK procedure)
 • Require ‘bandage’ contact lens after surgery
Wavefront guided technology

• Ability to measure total optical aberrations within the eye by passing many individual beams of light through the eye and measuring the distortion back.
• Wavefront map individual to each eye
• Allows wide treatment zones
Customised corneal surface treatment

• Increase in asphericity of surface can improve depth of focus
• ‘Blended monovision’
• Pilots should be warned that may require multifocal spectacles following treatment to meet requirements.
• Must be tolerant of spectacle correction
ReLEx (Refractive lenticule extraction)
SMILE (Small Incision Lenticule Extraction)

- Correction of myopia
- Stromal lenticule ablated and removed
- Relatively new technique
Corneal Inlays

- Marketed for presbyopia treatment
- Non-dominant eye treated
- Refractive
 - Similar to multifocal design
 - Not FDA approved
- Re-shaping
- Small aperture
 - KAMRA inlay
EASA requirements

• Implementing Rule:
 • Applicants who have undergone eye surgery may be assessed as fit subject to satisfactory ophthalmic evaluation

• Acceptable Means of Compliance:
 • After refractive surgery, a fit assessment may be considered, provided that:
 • pre-operative refraction was no greater than +5 dioptres;
 • post-operative stability of refraction has been achieved (less than 0.75 dioptres variation diurnally);
 • examination of the eye shows no postoperative complications;
 • glare sensitivity is within normal standards;
 • mesopic contrast sensitivity is not impaired;
 • review is undertaken by an eye specialist.
Current published Guidance Material

- Assessments undertaken at an AeMC
- LASIK: 3 month post-op with demonstration of refraction at 2 month post-op
- LASEK / PRK: 6 month post-op
- SMILE: 3 month post-op with demonstration of refraction at 2 month post-op
- Refractive lens exchange: 6/52 post-op (as for cataract surgery)
Audit of CAA AeMC refractive surgery cases

- 1 Jan 2009 – 31 Dec 2014
- Filtered by surgery type
- Outcome assessed
Refractive surgery audit results

<table>
<thead>
<tr>
<th>Surgery type</th>
<th>Fit</th>
<th>awaiting final review</th>
<th>awaiting report only</th>
<th>denied (pre-op refraction)</th>
<th>denied (contrast sensitivity)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RK</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>PRK</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>LASIK</td>
<td>405</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>413</td>
</tr>
<tr>
<td>LASEK</td>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>ICL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SMILE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>unknown</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>505</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>514</td>
</tr>
</tbody>
</table>

0.7% of LASIK denied, 0.6% of all cases assessed denied as of 23 March 2015
Current CAA Guidance (awaiting publication)

- Refractive surgery not recommended
- Any procedure considered for certification (except multifocal IOLs)
- No minimum post surgical periods stipulated
- Applicant provides report from surgeon once stability of refraction is established, no adverse effects or complications from surgery
- Applicant has been advised by surgeon that can resume other lifestyle activities
- Assessments include detailed refraction and slit lamp examination at an AeMC
- Objective examination of glare sensitivity and mesopic contrast sensitivity. Additionally no symptoms of glare, haloes or starbursting
- No pre-op limits for myopia or astigmatism. Pre-op refractions over +5.00D deferred to AMS
- No more than 0.75D diurnal variation in refraction for RK cases only
- Certification may be postponed if recovery / stability not achieved